

Published on Web 09/23/2009

Group-4 Transition-Metal Boryl Complexes: Syntheses, Structures, Boron–Metal Bonding Properties, and Application as a Polymerization Catalyst

Tomomi Terabayashi, Takashi Kajiwara, Makoto Yamashita,* and Kyoko Nozaki*

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received July 17, 2009; E-mail: makotoy@chembio.t.u-tokyo.ac.jp; nozaki@chembio.t.u-tokyo.ac.jp

Metal-boron σ bonds in transition-metal boryl complexes¹ have been proved to possess remarkable donor ability^{2,3} and a unique reactivity toward C-H bonds of hydrocarbons.⁴ Although group-5 boryl complexes⁵ and group-4 σ -borane complexes⁶ have been reported, there has been no example of group-4 transition-metal boryls.^{7,8} The reason for the lack of group-4 boryl complexes could be that synthetic methods for boryl complexes have been limited. All three conventional methodologies, $^{1}(1)$ reactions of anionic complexes with haloboranes, (2) oxidative addition of B-X bonds (X = B, H, halogen) to low-valent metal complexes, and (3) σ -bond metathesis of metal alkyls, hydrides, and alkoxides with boron-containing reagents, are not applicable to the syntheses of group-4 boryl complexes because (1, 2) anionic group-4 metal complexes and low-valent group-4 metal complexes are not easily available as precursors, (3) a Lewis acidic boron reagent may abstract an anionic ligand from a group-4 metal complex to form a borate complex rather than undergo σ -bond metathesis, and (4) it is not easy to obtain boryl anionic equivalents to do metal halide substitution, which is a standard approach for making metal-carbon bonds. In this context, our recent success in nucleophilic introduction³ of a boryl ligand to group-11 transition-metal centers using boryllithium 1^{9-12} prompted us to synthesize group-4 transitionmetal boryl complexes. Herein, we report syntheses, structures, and B-metal bonding properties of boryltitanium and borylhafnium complexes and their application as catalyst precursors for polymerization.

Boryltitanium triisopropoxide (2) was synthesized by reaction of boryllithium 1 with Ti(Oi-Pr)₄ (Scheme 1). Introduction of the boryl group to Cp*HfCl₃ using 1 and the following reaction with benzylpotassium gave HfCp*(boryl)Bn₂ (**3**).¹³ Complexes **2** and **3** are the first examples of group-4 metal boryl complexes.¹⁴ Boryltitanium **2** is also the first example of a borylmetal alkoxide.¹⁵ It is noteworthy that all attempted reactions of 1 with MCl_4 (M = Ti, Zr, Hf) gave the corresponding protonated hydroboranes 4,9,10 probably via proton abstraction by 1 from THF activated by the Lewis acidic metal center. In the ¹H NMR spectrum of **2**, the six methyl groups of the three isopropoxide ligands are equivalent, as are the four methyl groups of the Dip moieties. Borylhafnium 3 has two distinct methyl protons in the isopropyl groups, and two geminal protons on the benzylic carbon were separately observed. A broad ¹¹B signal was observed at the typical region for borylmetal complexes in both cases ($\delta_{\rm B}$ 38.2 for 2, $\delta_{\rm B}$ 70.0 for 3). No significant change was observed for either 2 or 3 in their ¹H{¹¹B} and non-proton-decoupled ¹¹B NMR spectra. These results suggest that the resulting complexes have no borane-type hydrogen atom around the metal center.^{6,16}

Crystallographic studies of **2** and **3** revealed a slightly distorted tetrahedral structure of **2** and a typical three-leg piano-stool structure of **3** (Figure 1). Selected bond distances and angles are summarized in Table 1. The B–Ti bond length of 2.258(2) Å in **2** is in the mid to lower end of the range of B–Ti interatomic distances in hydroborane–Ti⁶ and hydroborate–Ti¹⁷ complexes and is significantly shorter than those in Ti–carbollide complexes.¹⁷ The B–Hf

 $\ensuremath{\textit{Scheme 1.Syntheses}}$ of Boryltitanium 2 and Borylhafnium 3 from Boryllithium 1

bond length of 2.497(4) Å in **3** is close to the lower end of the reported B–Hf contact in carbollide–Hf complexes.¹⁷ Both B–metal bonds in **2** and **3** are slightly longer than the sum of the covalent radii of the atoms (B–Ti, 2.20 Å; B–Hf, 2.32 Å).¹⁸ The remarkably short Ti–O bonds (av 1.758 Å) and large Ti–O–C angles (av 164.9°) in **2** reflect double-bond character of the Ti–O bonds, which could be attributed to $p\pi$ –d π interactions between titanium and oxygen atoms.¹⁹ The two Hf–benzylic carbon bonds (av 2.219 Å) and five Hf–C(Cp*) bonds (av 2.494 Å) in **3** are similar to those observed in conventional Cp*Hf–alkyl complexes.²⁰

Figure 1. ORTEP drawings of (left) **2** and (right) **3** with 50% thermal ellipsoids. Hydrogens and minor parts of the disordered isopropoxide groups have been omitted for clarity.

Table 1. Selected Bond Distances (Å) and Angles (deg) in 2 and 3 and Reference Molecules $4,\,5,$ and 6

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	2	3	4	5	6
B-metal	2.258(2)	2.497(4)		2.226	2.394
B-N	1.446(3)	1.458(4)	1.418(3)	1.442	1.451
	1.447(3)	1.477(4)	1.423(3)		1.453
N-B-N	102.85(16)	100.6(3)	105.25(16)	102.2	100.9

To elucidate the nature of the group-4 transition metal—boron bond, DFT studies were conducted. The structural parameters of model borylmetal complexes 5 and 6, except for the orientation of the diazaborole ring in 6^{21} were close to those of 2 and 3 (Table 1). The optimized structures of 5 and 6 are illustrated with their

COMMUNICATIONS

HOMO and HOMO-1 orbitals in Figure 2. Both **5** and **6** have HOMO character similar to a π orbital of the diazaborole ring, like hydroborane **4**.^{10,11} The shape of HOMO-1 seems to be similar to the HOMO of boryllithium **1**•(THF)₂, which has lone-pair character on the central boron atom.^{10,11} Natural bond order (NBO) analyses of **5** and **6** suggest that both of the HOMO-1 orbitals have a shared two-center-two-electron bonding character with hybridizations of B-Ti = 0.5668(sp^{1.49})B + 0.4332(sp^{0.92}d^{1.06})Ti for **5** and B-Hf = 0.6265(sp^{1.06})B + 0.3745(sp^{0.54}d^{2.01})Hf for **6**.²² Atoms-in-molecule analyses also afforded the same conclusion. Negative $\nabla^2 \rho(r)$ values (-0.03079 e/a_0^5 in **5**; -0.33061 e/a_0^5 in **6**) at the bond critical point between the boron and metal atoms indicated covalent character for these B-metal bonds.²³

Figure 2. HOMO and HOMO-1 of (left) 5 and (right) 6.

Preliminary studies of the catalytic activity of **3** for polymerization of ethylene and hex-1-ene were performed (see the Supporting Information for details). An admixture of **3** with Ph₃CB(C₆F₅)₄ in toluene could polymerize ethylene to form a linear polyethylene (PE) [turnover frequency (TOF) = 110 kg of PE (mol of Hf)⁻¹ h⁻¹, M_n = 4800, polydispersity index (PDI) = 2.1, 2 branches per 1000 C]. The present system was also active for polymerization of hex-1-ene to afford an atactic poly(hex-1-ene) (PHex) (TOF = 21 kg of PHex (mol of Hf)⁻¹ h⁻¹, M_n = 3100, PDI = 2.2). Activities of **3**/Ph₃CB(C₆F₅)₄ toward polymerization were comparable to those of previously reported hafnium halfsandwich complex-derived catalyst systems.²⁴

In conclusion, two group-4 boryl complexes, boryltitanium 2 and borylhafnium 3, were synthesized via nucleophilic borylation using boryllithium 1. Complexes 2 and 3 are the first examples of group-4 borylmetals. Theoretical calculations on model molecules 5 and 6 indicated that the boron-metal bond in both complexes has covalent character. Complex 3 has an activity for polymerization of ethylene and hex-1-ene. Further studies on polymerization and modification of the boryl ligand are ongoing.

Acknowledgment. This work was supported by KAKENHI (21245023, 21685006, and 19027015, "Synergy of Elements") from MEXT, Japan.

Supporting Information Available: Details about preparations and characterizations of **2** and **3**, polymerization procedures, X-ray crystallography (CIF), and the computational study. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Irvine, G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. Chem. Rev. 1998, 98, 2685. (b) Smith, M. R., III. Prog. Inorg. Chem. 1999, 48, 505. (c) Braunschweig, H.; Colling, M. Coord. Chem. Rev. 2001, 223, 1. (d) Aldridge, S.; Coombs, D. L. Coord. Chem. Rev. 2004, 248, 535. (e) Braunschweig, H.; Kollann, C.; Rais, D. Angew. Chem, Int. Ed. 2006, 45, 5254. (f) Kays, D. L.; Aldridge, S. In Contemporary Metal Boron Chemistry I: Borylenes, Boryls, Borane; Springer-Verlag: Berlin, 2008; Vol. 130, pp 29–122.
- (2) (a) Zhu, J.; Lin, Z. Y.; Marder, T. B. Inorg. Chem. 2005, 44, 9384. (b) Braunschweig, H.; Brenner, P.; Müller, A.; Radacki, K.; Rais, D.; Uttinger, K. Chem.-Eur. J. 2007, 13, 7171. (c) Braunschweig, H.; Radacki, K.; Uttinger, K. Chem.-Eur. J. 2008, 14, 7858. (d) Braunschweig, H.; Green, H.; Radacki, K.; Uttinger, K. Dalton Trans. 2008, 3531. (e) Dang, L.; Zhao, H.; Lin, Z.; Marder, T. B. Organometallics 2008, 27, 1178. (f) Braunschweig, H.; Leech, R.; Rais, D.; Radacki, K.; Uttinger, K. Organometallics

2008, 27, 418. (g) Braunschweig, H.; Fuss, M.; Radacki, K.; Uttinger, K. Z. Anorg. Allg. Chem. **2009**, 635, 208.

- (3) Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2007, 46, 6710.
- (4) (a) Nguyen, P.; Blom, H. P.; Westcott, S. A.; Taylor, N. J.; Marder, T. B. J. Am. Chem. Soc. 1993, 115, 9329. (b) Cho, J.-Y.; Iverson, C. N.; Smith, M. R. J. Am. Chem. Soc. 2000, 122, 12868. (c) Iverson, C. N.; Smith, M. R., III. J. Am. Chem. Soc. 1999, 121, 7696. (d) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith, M. R., III. Science 2002, 295, 305. (e) Waltz, K. M.; He, X. M.; Muhoro, C.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 11357. (f) Waltz, K. M.; Hartwig, J. F. Science 1997, 277, 211. (g) Chen, H. Y.; Hartwig, J. F. Angew. Chem., Int. Ed. 1999, 38, 3391. (h) Waltz, K. M.; Muhoro, C. N.; Hartwig, J. F. Organometallics 1999, 18, 3383. (i) Chen, H. Y.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995. (j) Waltz, K. M.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 11358. (k) Kawamura, K.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 8422. (l) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 8422. (l) Ishiyama, 7, 2003, 61, 1176. (n) Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2003, 680, 3. (o) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271. (p) Ishiyama, T.; Miyaura, N. Pure Appl. Chem. 2006, 78, 1369.
- (5) (a) Hartwig, J. F.; De Gala, S. R. J. Am. Chem. Soc. 1994, 116, 3661. (b) Lantero, D. R.; Motry, D. H.; Ward, D. L.; Smith, M. R., III. J. Am. Chem. Soc. 1994, 116, 10811. (c) Lantero, D. R.; Ward, D. L.; Smith, M. R., III. J. Am. Chem. Soc. 1997, 119, 9699–9708. (d) Lantero, D. R.; Miller, S. L.; Cho, J.-Y.; Ward, D. L.; Smith, M. R., III. Organometallics 1999, 18, 235.
- (6) (a) Hartwig, J. F.; Muhoro, G. N.; He, X. M.; Eisenstein, O.; Bosque, R.;
 Maseras, F. J. Am. Chem. Soc. **1996**, 118, 10936. (b) Muhoro, C. N.;
 Hartwig, J. F. Angew. Chem., Int. Ed. **1997**, 36, 1510. (c) Muhoro, C. N.;
 He, X. M.; Hartwig, J. F. J. Am. Chem. Soc. **1999**, 121, 5033. (d) Hartwig,
 J. F.; Muhoro, C. N. Organometallics **2000**, 19, 30.
- (7) A gallylzirconium complex possessing a heavier group-13 element, gallium, has also been synthesized via oxidative addition of digallane to low-valent zirconium. See: Baker, R. J.; Jones, C.; Murphy, D. M. Chem. Commun. 2005, 1339.
- (8) Group-3 gallyl complexes have been synthesized using a gallyl anion. See: (a) Arnold, P. L.; Liddle, S. T.; McMaster, J.; Jones, C.; Mills, D. P. J. Am. Chem. Soc. 2007, 129, 5360. (b) Jones, C.; Stasch, A.; Woodul, W. D. Chem. Commun. 2009, 113. (c) Liddle, S. T.; McMaster, J.; Mills, D. P.; Blake, A. J.; Jones, C.; Woodul, W. D. Angew. Chem., Int. Ed. 2009, 48, 1077. (d) Liddle, S. T.; Mills, D. P.; Gardner, B. M.; McMaster, J.; Jones, C.; Woodul, W. D. Inorg. Chem. 2009, 48, 3520.
- (9) Segawa, Y.; Yamashita, M.; Nozaki, K. Science 2006, 314, 113.
 (10) Segawa, Y.; Suzuki, Y.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc.
- (10) Segawa, Y.; Suzuki, Y.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2008, 130, 16069.
- (11) Yamashita, M.; Suzuki, Y.; Segawa, Y.; Nozaki, K. Chem. Lett. 2008, 37, 802.
- (12) (a) Marder, T. B. Science 2006, 314, 69. (b) Braunschweig, H. Angew. Chem., Int. Ed. 2007, 46, 1946.
- (13) The reaction of 1 with Cp*HfCl₃ presumably afforded Cp*HfCl₂(boryl) or Cp*HfCl₃(boryl)⁻. It is noteworthy that the following reaction of PhCH₂K with them occured at the metal center, not on the boron atom.
- (14) The stability of **2** and **3** shows that the boryl ligand can coexist in the coordination sphere with other nucleophilic ligands such as alkoxides and alkyls.
- (15) There has been one report of a borylosmium complex having intramolecular coordination of an alcoholic OH group to the metal center. See: Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J. J. Organomet. Chem. 2004, 689, 1609.
- (16) (a) Alcaraz, G.; Sabo-Etienne, S. Coord. Chem. Rev. 2008, 252, 2395. (b) Lin, Z. In Contemporary Metal Boron Chemistry I: Borylenes, Boryls, Borane; Springer-Verlag: Berlin, 2008; Vol. 130, pp 123–148.
- (17) The Cambridge Crystallographic Database listed all of the structurally characterized Ti and Hf complexes having relatively short interatomic metal boron distances. For all of these references, see the Supporting Information.
- (18) Emsley, J. *The Elements*; Oxford University Press: New York, 1998.
 (19) A similar shortening of the Ti-O bond was observed in the structure of the alkyltitanium triaryloxide species (Me₃SiCH₂)Ti(O-2,6-Ph₂C₆H₃)₃. See: Chesnut R. W.: Durfee, L. D.: Fanyick, P. E.: Rothwell, J. P.: Folting
- Chesnut, R. W.; Durfee, L. D.; Fanwick, P. E.; Rothwell, I. P.; Folting, K.; Huffman, J. C. *Polyhedron* **1987**, *6*, 2019.
 (20) (a) Yasumoto, T.; Yamagata, T.; Mashima, K. Organometallics **2005**, *24*, 3375. (b) Swenson, D. C.; Guo, Z.; Crowther, D. J.; Baenzigera, N. C.;
- Jordan, R. F. Acta Crystallogr. 2000, C56, E313. (c) Kissounko, D. A.; Zhang, Y.; Harney, M. B.; Sita, L. R. Adv. Synth. Catal. 2005, 347, 426.
 (21) It was confirmed that this difference in the orientation angles of the
- (21) It was commined that this difference in the orientation angles of the diazaborole rings in 3 and 6 did not affect the bonding character. See the Supporting Information.
- (22) For comparison, an NBO analysis of boryllithium 1•(THF)₂ with cc-pvdz basis sets was independently performed in this study. The analysis indicates that the boron center of boryllithium 1•(THF)₂ has LP character in its sp^{1/237} hybridized orbital.
- (23) This is in contrast to the case of $1 \cdot (THF)_2$, which has positive $\nabla^2 \rho(r)$ values, indicating ionic character of the B–Li bond. See ref 10 and the Supporting Information.
- (24) For PE, see: (a) Shah, S. A. A.; Dorn, H.; Voigt, A.; Roesky, H. W.; Parisini, E.; Schmidt, H.-G.; Noltemeyer, M. Organometallics 1996, 15, 3176. (b) Hessen, B.; van der Heijden, H. J. Organomet. Chem. 1997, 534, 237. (c) Lee, K.-S.; Kim, Y.; Ihm, S.-K.; Do, Y.; Lee, S. J. Organomet. Chem. 2006, 691, 1121. (d) Zhang, W.; Wei, J.; Sita, L. R. Macromolecules 2008, 41, 7829. For PHex, see refs 20a, c and 24d.

JA905950G